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AIlIIrad-The dependence of the forming limit curve on the deformation history is exammed by consider­
ing two specific examples of sheet metal formina. representative of two classes of non-proportional strain
path: one example IS an axisymmetric punch stretching problem. which gIVes nse to agradual varllllton lD the
stram path from a proporttonal path; the other example consists of a sheet with residual strlUns subjeCted
to a proportional stretehmg so that the complete deformation history. if represented In the prin­
cipalm-plane strain coordinates. takes a sharp turn. ResJdts are presented for these examples for each
of three plasticIty theories: flow theory. Jrdeformation theory and the recently proposed corner theory By
assuming a plastic potential increment dependent on the dtreclton and magnitude of the incipient plastic
strain increment the corner theory gives results which agree qualitaltvely with eXperimental observations
and therefore seems to be favored for tbe bifurcation analysis of sheet metal formma problems involvina
sipificant strain path variations

I. INTRODUCTION
The concept of using the forming limit curve as a means to characterize the formability of
sheet metals has been widely applied for some time. Implied by this idea is the insensitivity of
the forming limit curve to the deformation history. However, considering the well-recognized
path-dependence of plastic deformation, which is a dominant feature of many sheet metal
forming processes, it is expected, and indeed there is experimental evidence [1-4], that the limit
states achievable by different forming processes are not the same.

Theoretical studies of formability so far have been mainly focused on proportional stretch­
ing, where HiD's bifUlUtion analysis[5] demonstrated the inadequacy of flow theory in the
prediction of localized e;:kin& for biaxial stretching. Analytical explanation for the experi­
mentally observed failure by necking in this stretching mode was then sought by Marciniak and
Kuczynski via their imperfection model[6], and by Staren and Rice{7], who showed that a
constitutive model other than flow theory could display local necking behavior in a sheet of
uniform thickness.

Punch stretching, which is of practical interest and, in fact, is commonly used to determine
the biaxial stretching quadrant of the forming limit curve, has been analyzed recently [8-1 0]. Due to
the geometric constraints and the existence of an interfacial frictional force between the punch and
sheet, the strain distribution is not uniform. As a consequence, the strain path
followed by a material element deviates from a proportional strain path. This represents one
situation in wbich the actual forming limit curve can differ from that obtained by assuming
proportional straining.

Another type of non-proportional strain path which will be considered is one whicb features
an abrupt alteration, as opposed to the gradual deviation from proportional straining asso­
ciated with the situatiOn just discussed. Such an abrupt path change would result from a
multiple-step forming process lite the stretching of a sheet which already contains residual
strains.

Storen and Rice's approach will be adopted here. That is, the sheet thickness is assumed
uniform prior to the onset of localized necking, which is modelled by a, singularity in the
incremental equilibrium equation. Of particular interest is the corner theory of plasticity,
recently proposed by Christoffersen and Hutchinson[11], which coincides with 12-deformation
theory for nearly proportional loading paths and incorporates a smooth transition to elastic
unloading for increasingly non-proporuonalloading paths.

For punch stretching problems, the forming limit curves were obtained in [10] by employing
flow theory and 12-deformation theory. Therefore, calculations are carried out here for comer
theory only. The formulation and results, illustrating the effects of gradual deviation from
proportional straining, are presented in Section 2.
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Fig I. ConfiauratlOn of a hemISpherical punch stretciung operation

Proportional stretching after prestraining IS studied 10 Section 3 to reveal the effects of an
abrupt strain path change on the forming limit curve.

The results determined by applying the three plasticity theories mentioned are qualitatIvely
compared with experimental results in Section 4 to reveal the degree of suitability of each of
these theories in the analysis of sheet metal forming problems.

2. ANAL YSIS OF LOCALIZED NECKING FOR PUNCH STRETCHING
2.1 Formlllation

As shown in F'Ig. 1, a circular thin sheet of radius R and initial thickness to. clamped alOll8
its periphery, is stretched over a rigid hemispherical punch of I1I.dius A. A Lagrangian
formulation, in which a material point is identified by its initial radial distance, r, from the axis
of symmetry, is adopted. The incremental virtual work principle within the framework ~f

membrane theory has the form[lO):

l
R

[ • B' .~.:. (d'; dB'; dw d8W) ,; 8U] d
o 7'J EJ + 7'211e2 + 7'1 dr dr+"d'r"""d'r + 1'2 rr tor r

(1)

where the subscripts 1 and 2 denote the first and second principal directions, which coincide
with the radial and circumferential directions respectively and which remain fixed relative to
the material throuahout the deformation process; Ea are the logarithmic strain increments
defined in terms of the horizontal and vertical (as illustrated in Fig. 1) displacement increments
,; and tV by

E = [(1+ dU) du +dw dW]/[(1 +dU)2 + (dW)2]
1 dr dr dr dr dr dr

(2)
E2 = u!(r +u);

and 7'a are the principal Kirchoff stress components related to the corresponding principal
Cauchy stress components by

(3)

with J being the volume ratio of an element in the deformed configuration to an element in the
undeformed configuration.
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The r.h.s. of eqn (l) represents the external virtual work done by an increment of the
frictional force between the punch and the sheet over the contact area 0s r:s R*, with R*
increasing as the punch moves downward. Coulomb's law is employed to relate the frictional
force to the interfacial pressure, p, which according to membrane theory can be determined by

(4)

Also appearing on the r.h.s. of eqn (1) is the relative displacement, II" of a material point
with respect to the rigid translation of the punch. The subscript t is adopted because the
relative displacement has a direction tangent to the current sheet surface.

Details of the simplified one-dimensional formulation, eqns (lH4), can be found inIlO].

2.2 Constitutive relation
Of primary interest here is the corner theory recently proposed by Christoffersen and

Hutchinson(11]. It is assumed that acomer will be formed at the loading point on the yield surface,
and that a plastic potential increment, wP, which must satisfy Drucker's postulate, depends on the
direction of the continuing loading path at that point. One of the two forms of
such a plastic potential increment suggested in[l1] and written in terms of the plastic strain
increments will be adopted here.

As shown in Fig. 2, tP is the angle by which the plastic strain increment deviates from a
proportional loading path, whose direction, according to the Mises criterion, coincides with that
of the current deviatoric stress tensor in stress space; t/J =(J. and t/J =(Jo represent conical
surfaces, the former separating elastic unloading from plastic ftow, and the latter bounding the
fully active plastic region[12J. The plastic potential increment is assumed to have the form

(5)

where 1<.>-0 for.~ (J. and 8(.>-1 for. s 80. In the transition resion, 8o:S.S flU 1<.) is
chosen to be the following function, which gives rise to smoothly varying instantaneous moduli:

(6)

with x = (", -/Jo)/((J. - 60) and m>2. Hereafter the Latin subscripts ranae from 1 to 3.
Since 6<.) is identically one in the fully active region, M~ in eqn (5) have the meaning of

instantaneous plastic moduli for proportional (. = 0) or near-proportional (. S 60) loading. The
choice of the instantaneous moduli M~ from l z-deformation theory is thus motivated by the
wen-known fact that this theory bas been more successful than tow theory in bifurcation
analyses with the restriction that it is physically unacceptable when dramatic chanaes occur in

Fie. 2.~ representation of the deYiltion of the plastic ItrIin padt from aproportionalloldillpadt
for a vertex model.
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the loading path. Therefore we have

(7)

where E, EJ and Et are Young's modulus, the secant modulus and the tangent modulus,
respectively, as usually defined from a uniaxial true stress-logarithmic strain curve; ~ is the
Kronecker delta function; u. is the ftow stress, defined as the larger value of the initial yield
stress and the maximum of the elective stress over the stress history; and Sf! are the deviatoric
stress components. This finite strain version of J2-deformation theory was first derived by
StOren and Rice (7].

By ~king the derivative of eqn (5) with respect to €~ and inverting the resulting equations,
s,/ == aWp/ai~, we obtain

(Sa)

or

(Bb)

with

D ==l (~J - ~)/g(tP)(l + Icot q,)

and

I =: g'( tP )/2g(tP).

In eqns (8), (*)denotes the Jaumann derivative of the stress components and is defined as

(9)

The elastic strain increments are given by Hooke's law

(10)

If we assume the total strain increment to be the sum of the elastic and plastic strain increments,
then eqns (8) and (10) are combined and inverted to give

(11)

with

where" in Poisson's ratio.
Equations (11) are written in the present form for the convenience of computation; that is,

by replacing D and F with proper values, flow theory and J2-deformation theory can be
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recovered. (D = 0 and F = ~(lIE,-1/E) for flow theory, and D = ~(lIE, -lIE) and F =
~(1/E,-1/E.) for J2-deformation theory.)

For problems with the current principal axes known, as in the present case, we introduce a
vector U defined as

U, = I i = I, 2 and 3

so that (x/U,) gives the sum of the components of a vector x and (CU,) represents a vector with
all of its components being equal to C. Equations(ll) are then written in a short form in terms
of principal components of stress increments and strain increments,

with (12)

By considering eqns (3) and (9) and neglecting the volume cllanae resuJtin& from elastic
deformation, which is small compared to the total deformation, eqns (12) are transformed to

+, =CqE}

with (13)

The desired incremental stress-strain relations are obtained by employing the pilUle-stress
condition, ';3 =0, in eqn (13). Thus, we obtain

with (14)

2.3 Numerical results
Afinite-eJement method described in[IO), which accounts for the moving boundary conditions

and the frictional force in the contact region, is employed. The uniaxial stress-strain curve used in
the calculations is amodified power law with acontinuous tangent modulus at the initial yield point,

(IS)

where Eeis the equivalent strain with its increment defined as

Two sets of the parameters In, 80, 8" of g(tII) are considered: (i) m=2.5,80 =00,8" =68° and
(ii) m=5.0, 80 = 34°, 8" =68°. The first set is chosen because it was shown in [In to most
closely reproduce the ratio of instantaneous effective shear modulus to the elastic shear
modulus, obtained from a self-consistent model of a polycrystal (13), as a function of •. The
second set is included to demonstrate the inftuence of these parameters OD the results.
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Fig 3 Fonning b~lt curves obtained from punch stretclung problems for three constitutive models WIth stram
hardening exponent /I =0.2, with each of the dasbed curva representing the stram path followed by the critical

material point

Since the instantaneous moduli Call of corner theory depend on the yet-to-be-determined
plastic strain increment, iteration is necessary for each incremental step. However, to save
computing time, the current plastic strain increment is approximated by the increment obtained
from the previous step. The error involved can be limited if sufficiently small steps are used.

As in [10], the value of the frictional coefficient, p., raBling from 0.0 to 0.75, plays the role of
varying the uniformity III the strain distribution and hence the strain ratio of the critical strain
state.

Unlike ftow theory, from which no bifuration can be predicted for inplane as well as
out-of-plane biaxial stretching, but similar to J2-deformation theory, the comer theory adopted
here results in a sinauJar equilibrium equation at a realistic strain level. The maximum strain
reached at the onset of such a siqularity is used to construct the formina limit curve.

IDustrated in Figs. 3 and 4 are the forming limit curves for cases with the strain hardening
exponent n =0.2 and 0.5 respectively. Results for n =0.125 are similar to those in Fig. 3 and
therefore are not diaplayed. It is observed from Fig. 3that, for moderate and low strain hardening
materials, the forming limit curve obtained by the comer theory attains a hither major principal
strain than that obtained by J~eformation theory, but lies at a major principal strain level lower
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material POint and dotted curve representing the strain state at whIch unloading first occurs
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than that obtained by flow theory. By increasing mand/or 00' the resulting limit curve converges to
that predicted by J2-deformation theory.

Figure 4 shows that for high strain hardening materials the forming limit curves obtained lie
at lower major principal strain levels than those from J2-deformation theory as well as those
from flow theory. This is because localization of strain is accelerated by elastic unIoaclina in
part of the sheet, which, for the present theory, occurs at a strain level approximately the same
as that predicted by J2-deformation theory but, due to less stiffness, much lower than that
predicted by flow theory. A higher limit strain by J2-deformation theory, on the other band,
results from the fact that the same modulus is adopted for both loading and unloadiDI branches,
which allows further distribution of the strain increments over a wider area and hence a later
development of instability.

Since for in-plane proportional stretching corner theory predicts the same limit curve as
J2-deformation theory does, and the latter gives the same limit curve for punch stretching and
in-plane stretching, comparison of the present results with those from J2-deformation theory
also illustrates the differences between the forming limit curves obtained by punch stretching
and by in-plane stretching when corner theory is adopted. Figures 3and 4 therefore indicate that
for low and moderate strain hardening materials, the limit strains achievable by punch
stretching are higher than those achievable by proportional stretching. However, for high strain
hardening materials, the opposite situation results.

3. ANALYSIS OF LOCALIZED NECKING FOR IN·PLANE STRETCHING
INVOLVING PATH CHANGES

3.1 Formulation
As derived by Storen and Rice in [7), an incipient non-uniform flow field f across a band,

with unit normal D, has to satisfy the incremental equilibrium equations

(l6)

Here Lafl'Yf are the instantaneous moduli relating the Cauchy stress increments and the strain
increments. They can be obtained from eqns (9) and (11) and the plane-stress condition as

La/hE =i aflyl - i afJ33 My, -! (UfJl Bay +Uay BfJE +Ua~flY +uflyBaf) (l7)

with My( representing the ratio of the thickness strain increment, E33' to the in-plane strain
increment Ey(, or

(18)

Localized necking is considered possible when a non-zero flow field f exists; that is, when
the determinant of the coefficients in eqns (l6) is zero.

3.2 Solution
To examine the effect of an abrupt path change on the forming limit curve, a simple

two-step stretching process, as described in the following diagram, is considered.

{u. = u.,," =0, E =O}
~

Step (l)
J.

{u. =fJIU,(I), ,,(/) = (UI(/), lr,u.(/), 0), El ') =(E,(/), p,Et(/), 'Y,E.(I~}

J.
Unloading

J.
{u. = fJ,U,('I, ,,101= 0, .(0) = (EI(O), E2(01, E3(0)}

J,
Step (2)

J,
{u. = fJ2Ul(2), ,,(2) = (UI(2), lr2Ut(21, 0), E(21 = (t/Ol+EI(21, E2(0) +P2EI I21, E2(0) + 'Y2EI(2»}
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where Steps (1) and (2) are proportional strain paths with strain ratio PI and Pl, respectively.
The residual strain iO) is the plastic part of ~(\) The constants a,(3 and yare functions of the
strain ratio and Poisson's ratio. Flow stress (f., as defined earlier,Is the larger value of the initial
yield stress and the maximum of the effective stress over the stress history. Note that while the
initial yield stress IS try for Step (I), it is raised to (3,(f,(\) for Step (2).

Since Jrdeformation theory is not physically acceptable when unloadIng occurs, only tlow
theory and corner theory will be considered here.

Before carrying out the incremental calculations, which include solVIng for the stress and
strain fields and checking the uniqueness of these solutions, eqns (16), the problem can be
better addressed if the approximation of neglecting the elastic deformation is adopted. As a
result of this approximation, a, (3 and yare related to P by

a =(l +2p)/(2 +p), (3 =V(3(l +P+p2»/(2 +p) and y =-(1 +pl. (19)

Since the current stress field, U, and the instantaneous modulus, L, during the second
stretching process are determined by the strain increment E" the onset of an instability of the
strain field is thus unaffected by the residual strain ~(O). Therefore, eqns (16) require attainment
of the same stress state to trigger localized necking as required in a one-step proportional
stretching problem with strain ratio Pl. Consequently the equivalent strain at this limit stress
state may be determined from the corresponding one-step proportional stretching problem, as In
[5,7]. Alternatively it may be obtained by integrating the strain increment through the two-step
stretching process being examined here. The necessary equivalence of these two expressions
gives

which can be rearranged to give the limit value for the major principal strain in the two-step
process as

(21)

(22)

where El* is the lImit major principal strain obtained from the corresponding proportional
stretching problem.

Equation (21) can be used to construct the forming limit curve for vanous values of Pit P2
and EllO). It also clearly demonstrates that

( > * h >EI)hm< E} W en P2< PI

The value of EI* predicted by tlow theory for biaxial stretching is known to be unreasonably
htgh; eqn (21) thus gives only part of the forming limit curve, as shown in Fig. 5 where cases
with PI = 1.0 and - 0.5 with several EIlO) values are plotted for materials with II =0.2. It can be
observed that some strain states with negative strain ratios, which are unreachable by a
single-step proportional stretching, are predicted to be free of localization phenomena if a
uniaxial prestrain is imposed. On the other hand, localized necking, which is excluded for all
biaxial stretchinR. can occur at certain biaxial strain states if the sheet is prestretched biaxially.

If corner theory is employed, e'1* obtained by Storen and Rice[71, is used in eqn (21). The
resulting forming limit curves for n = 0.2 and 0.4 are displayed (as dashed curves) in Figs. 6 and
7 respectively. These figures show that V-shaped forming limit curves are obtained for the
PI =1.0 and PI =-0.5 cases, even for high strain hardening materials for which a flattened or
even falling biaxial branch of the limit curve is predicted for proportional stretching. The
minimum point of such a V-shaped curve, compared with StOren and Rice's result, is seen to be
lower for sheets with biaxial prestrain and hiaber for sheets with uniaxial prestrain.

As mentioned earlier, the elastic strain has been neglected in the above approximation.
Numerical calculations carried out incrementany show that while the elastic part of the
deformation has neglegible inftuence on the previous results if ftow theory is employed, it can
result in a significant difference in the corner theory solution, the magnitude of this difference
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depending mainly on bow the parameters m, 80 and 8" are chosen. Figures 6 and 7 show the
results of these numerical calculations for corner theory including the elastic deformation,
employing the same two sets of parameters for g(tII) as in Section 2J; the data obtained from
the first set are displayed as solid lines. They differ most greatly from the approximated results
at both ends of the curves. By increasing m and/or 80, the difference diminishes as illustrated
by the square symbols in Figs. 6(a) and 7(a). As a check of the results, a yield surface with a
more blunted comer (m =2.5, 80 =0, 8" =30") is also considered. In this case, even a minor
deviation of the plastic strain increment from the proportional path can stimulate a much stiffer
material reaction, which therefore leads to a prediction closer to that of flow theory, as
illustrated by circles in Figs. 6(a) and 7(a).

F'mally it should be pointed out that in the calculation the material is assumed to yield during
the second stretching process only after the previous maximum equivalent stress level is
attained. This is of course an approximation which ignores the anisotropy that vertex formation
necessitates. Therefore, further investigations which take into account this developing anis­
tropy of the yield surface are desirable.

4 DISCUSSION
For the problems considered in the previous Sections, a few experimental results are

available for qualitative comparison. In [1-,2], it was observed that the forming limit curves
obtained by punch stretching attain higher values of the limiting major principal strain than

ss Vol 18. No ~
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those obtained by in-plane stretching. As shown in [10], ftow theory predicts the opposite trend;
that is, for the axisymmetric punch stretching problem, localization of 'Strain can be iDitiated at
a strain level much lower than that for proportionalloadina. Neither are J2-deformation theory's
results-a unique formiq limit curve independent of the deformation history-compatible with
experimental observations. The presently adopted corner theory, however, by assuming a
biaher instantaneous modulus for an increasingly non-proportional strain path, does result in
higher formability for the punch stretching process than for the in-plane stretchioa process for
low and moderate strain bardeDing materials. For hiah strain hardenina materials the dis­
agreement between the analytical and experimental results, which is greatest for a nearly
plane-strain stretching mode in which the strain distribution is biPlY non-uniform, can be
attributed to the early occurrence of unloading in part of the sheet durina a punch stretching
process, The disagreement is expected to be minimized if the material's rate sensitivity is taken
into account.

In [3,4], experiments demonstrated that the limit major principal strain is raised and lowered
due to the existence of biaxial and uniaxial prestrains respectively. These elects of the
prestrain are qualitatively predicted by comer theory, as shown in Section 3. However, the
phenomenoloaical corner theory is not necessarily the only way to explain the inluellu from
prestretcbing. In fact, according to eqn (21), the same elect can also be obtained by low theory
except that in this case the precli~ value of fT for biaxial stretching is too hiIb to be realistic.
Therefore, Marciniak and Kuczynski's[6] model. for example, with its assumed intia1 imper­
fection to instigate necking for biaxial stretching mode, should also be able to predict
qualitatively the effects of the prestrain on the formina limit curve.

It is interesting to notice that eqn (21) was proposed in [4], althouib without justiication.
The analysis in this paper, on the other hand, is based on the assumption that no residual
stresses are present after unloading, and this is aenerally not true.

Further studies involving more complicated path changes are desirable in order to have a
complete view of the path dependence of the formins limit curve. But the present study
demonattates that the corner theory of plasticity proposed in [11] is favored for the bifurcation
analysis of sheet metals subjected to formilJl pr~ses with dramatic path chaaaes.
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